Scintillation mechanism

scintillation, followed by resonant dipole-dipole interaction with fluor; strong coupling increases

fluor shifts wavelength to where the base is more transparent; shortens the decay time of scintillation and increases yield

Cautions: aging and handling, radiation damage, ...

they have low Z, being mainly made of H and C

- low γ detection efficiency (≈ only Compton effect).
- but high neutron detection efficiency via (n,p) reactions

Spring, 2009

Organic scintillators – light yield

- Attenuation lengths are sensitive to optical clarity, surface quality (internal reflection) and impurities
 - often deal with >meter lengths of scintillators, so these optical effects are important
- Aging and crazing (microcracks in surface) diminish light yield
- Radiation damage is complex; it affects both light yield and attenuation

Examples of organic scintillators

Light guide to couple to PMT

Fiber readout also used

Scintillator readout

- light guides
 - transfer by total internal reflection (and reflector)

wavelength shifter (WLS) bars

- Inorganic crystalline scintillators
 - Ionization by charged particles
 - Nal, Csl, BaF₂, Bi₄Ge₃O₁₂, PbWO₄,...
 - High density and high Z
 - well suited for detection of charged particle and γ
 - densities: between ~4 and ~8 g cm⁻³
 - high dE/dx
 - high conversion efficiency for electrons and γ
 - often with very high light output
 - often more than two time constants
 - fast recombination from active centers (ns to μs)
 - delayed recombination due to trapping (≈100 ns)

 light ouput has strong temperature dependence

PWO4 final polished cristal for CMS calorimetry

Lead Tungstate crystal SIC-78

from China

- Higher densities, lower light yields relative to organics
- Crystals slow and expensive to grow
- Light collection efficiency optical transparency, surface quality, scattering centres
- Signal development can be slow; 100s of ns

Parameter	•	MP	X_0^*		dE/dx	λ_I^*	$\tau_{\rm decay}$	$\lambda_{\rm max}$	n^{\natural}	Relative output [†]		d(LY)/dI %/°C [‡]
Units: g	g/cm ³	°C	$^{ m cm}$	$^{ m cm}$	MeV/cm	cm	ns	nm				%/°C+
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	230	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF_2	4.89	1280	2.03	3.10	6.6	30.7	630^{s}	300^s	1.50	36^s	$_{ m no}$	-1.3^{s}
							0.9^{f}	220^{f}		3.4^{f}		$\sim 0^f$
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1300	560	1.79	165	$_{ m slight}$	0.3
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	35^s	420^s	1.95	3.6^{s}	slight	-1.3
							6^f	310^{f}		1.1^{f}		
${\rm PbWO_4}$	8.3	1123	0.89	2.00	10.2	20.7	30^s	425^s	2.20	0.083^{s}	no	-2.7
							10^{f}	420^{f}		0.29^{f}		
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	420	1.82	83	$_{ m no}$	-0.2
$\operatorname{GSO}(\operatorname{Ce})$	6.71	1950	1.38	2.23	8.9	22.2	600^s	430	1.85	3^s	no	-0.1
organic	~1	,	~40		~2	~80	~2	tune		~25	no	

Phys 521A

- Liquid noble gases (LAr, LKr, LXe)
 - also two time constants
 - few ns and 100 to 1000 ns, but same wavelegth

Examples of inorganic scintillators

CsI(TI)

 BaF_2

Lead Tungstate

■ Parallel electrodes

■ Use conservation of energy in C

$$\frac{1}{2}CU_{\circ}^{2} = \frac{1}{2}CU^{2}(t) + \text{work done by } \vec{E} \text{ on drifting charges}$$

$$-\frac{dU(t)}{dt} = \frac{Ne}{Cd} \left[v^{-} + v^{+} \right] \qquad \text{holds for } v = v \left(|\vec{E}|(t) \right)$$

TRIUMF Summer Institute 2006, Particle Detectors

Michel Lefebvre, Victoria

I/14

Cylindrical electrodes
$$|\vec{E}(r)| = \frac{U}{r \ln \frac{r_c}{r_a}} \propto \frac{1}{r}$$

If approximation $v^{\pm} \propto |\vec{E}|$ then
$$-\Delta U^{-} = \frac{Ne}{C} \frac{(\ln r_c - \ln r_a)}{(\ln r_c - \ln r_c)}$$

$$\Delta U = \Delta U^{-}$$

anode
$$r_a$$

$$-\Delta U^{-} = \frac{Ne}{C} \frac{(\ln r_{\circ} - \ln r_{a})}{(\ln r_{c} - \ln r_{a})}$$
$$-\Delta U^{+} = \frac{Ne}{C} \frac{(\ln r_{c} - \ln r_{\circ})}{(\ln r_{c} - \ln r_{a})}$$

$$-\Delta U^{-} = \frac{Ne}{C} \frac{\left(\ln r_{\circ} - \ln r_{a}\right)}{\left(\ln r_{c} - \ln r_{a}\right)}$$

$$-\Delta U^{-} = \frac{Ne}{C} \frac{\left(\ln r_{\circ} - \ln r_{a}\right)}{\left(\ln r_{c} - \ln r_{\circ}\right)}$$

$$-\Delta U^{+} = \frac{Ne}{C} \frac{\left(\ln r_{c} - \ln r_{\circ}\right)}{\left(\ln r_{c} - \ln r_{a}\right)}$$

$$\Delta Q = -Ne = C\Delta U$$

$$\Delta U^{+} = \frac{\ln r_{c} - \ln r_{\circ}}{\ln r_{\circ} - \ln r_{a}} \quad \text{If } r_{\circ} = \frac{2}{3} r_{c} \quad \text{and} \quad r_{a} \ll r_{c} \quad \text{then} \quad \frac{\Delta U^{+}}{\Delta U^{-}} = \frac{\ln \frac{3}{2}}{\ln \frac{2r_{c}}{3r_{a}}} < 1$$
for $r_{c} = 1$ cm and $r_{a} = 30$ µm then $\frac{\Delta U^{+}}{\Delta U^{-}} = 0.075$

- in general electrons contribute more to the signal
- discharging C: pocket dosimeter

TRIUMF Summer Institute 2006. Particle Detectors

Michel Lefebvre, Victoria

I/17

Charge transport in gases

- Recall primary/total ionization (n_T ~ 2-3 x n_P)
- Distribution of ejected electrons ~ 1/E² (E=electron energy)
- Ionization clusters form around energetic secondary electrons; can degrade time and position resolution

Probability of producing an electron of energy ≥E (left scale), and range of electrons in Argon at NTP (right scale)

Drift velocity

- Liberated electrons accelerated by applied field, but have small mean-time-between-collisions τ , so $v_d = e \ E \ \tau \ / \ m << v_{rms}$ (think Ohm's law)
- More sophisticated model (ω = Larmor freq eB/m):

$$\mathbf{v_d} = \frac{e}{m} \frac{\tau}{1 + \omega^2 \tau^2} \left(\mathbf{E} + \frac{\omega \tau}{B} (\mathbf{E} \times \mathbf{B}) + \frac{\omega^2 \tau^2}{B^2} (\mathbf{E} \cdot \mathbf{B}) \mathbf{B} \right)$$

- Drift velocity depends on τ , i.e. on collisional crosssections; very sensitive to gas mixture, contaminants
- ExB force causes "Lorentz angle" (see above);

$$\tan \theta_B = \omega \tau$$